Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38641234

RESUMO

PURPOSE: The role of stereotactic radiosurgery (SRS) in the management of grade 2 and 3 meningiomas is not well elucidated. Unfortunately, local recurrence rates are high, and guidelines for management of recurrent disease are lacking. To address this knowledge gap, we conducted STORM, a multicenter retrospective cohort study of patients treated with primary SRS for recurrent grade 2 and 3 meningiomas. METHODS AND MATERIALS: Data on patients with recurrent grade 2 and 3 meningioma treated with SRS at first recurrence were retrospectively collected from eight academic centers in the United States. Patients with multiple lesions at the time of initial diagnosis or more than two lesions at the time of first recurrence were excluded from this analysis. Patient demographics and treatment parameters were extracted at time of diagnosis, first recurrence, and second recurrence. Oncologic outcomes including progression-free survival (PFS) and overall survival (OS) as well as toxicity outcomes were reported at the patient level. RESULTS: From 2000-2022, 108 patients were identified (94% grade 2, 6.0% grade 3). 106 patients (98%) had upfront surgical resection (60% gross-total resection) with 18% receiving adjuvant radiotherapy (RT). Median time to first progression was 2.5 years (IQR 1.34-4.30). At first recurrence, patients were treated with single or fractionated SRS to a median marginal dose of 16 Gy to a maximum of two lesions (87% received single fraction SRS). Median follow-up time after SRS was 2.6 years. 1-, 2-, and 3-year PFS was 90%, 75%, and 57%, respectively after treatment with SRS. 1-, 2-, and 3-year OS was 97%, 94%, and 92%, respectively. On multivariable analysis, grade 3 disease (HR 6.80; 95% CI 1.61-28.6), male sex (HR 3.48; 95% CI 1.47-8.26), and receipt of prior RT (HR 2.69; 95% CI 1.23-5.86) were associated with worse PFS. SRS dose and tumor volume were not correlated with progression. Treatment was well-tolerated, with a 3.0% incidence of grade 2+ radiation necrosis. CONCLUSIONS: This is the largest multi-center study to evaluate salvage SRS in recurrent grade 2 and 3 meningiomas. In this select cohort of patients with primarily grade 2 meningioma with potentially more favorable natural history of delayed, localized first recurrence amenable to salvage SRS, local control rates and toxicity profiles were favorable, warranting further prospective validation.

2.
Cureus ; 16(3): e55483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571852

RESUMO

The treatment of breast cancer is largely determined by protein expression assays of estrogen receptor, progesterone receptor, and Her2/neu (HER2) status. These prognostic markers may vary due to tumor heterogeneityor the evolution of prognostic markers throughout the course of treatment. This report presents a case of a patient who initially presented with HER2-negative breast cancer and had rapidly progressed on numerous lines of treatment. An analysis of cerebrospinal fluid via next-generation sequencing and biopsy of metastasis to the liver identified HER2-positive cancer, which allowed for the use of trastuzumab deruxtecan, a HER2-targeted therapy. This led to an excellent clinical response with improvement in performance status and quality of life. This case report demonstrates the importance of continuing to follow a patient's cancer pathology to open the doors for other opportunities for treatment. Cancer has the potential to evolve and there is a benefit of obtaining rebiopsies to ensure the correct targeted therapies are provided to the patient.

3.
Med Phys ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588475

RESUMO

BACKGROUND: MRI-Linac systems enable daily diffusion-weighed imaging (DWI) MRI scans for assessing glioblastoma tumor changes with radiotherapy treatment. PURPOSE: Our study assessed the image quality of echoplanar imaging (EPI)-DWI scans compared with turbo spin echo (TSE)-DWI scans at 0.35 Tesla (T) and compared the apparent diffusion coefficient (ADC) values and distortion of EPI-DWI on 0.35 T MRI-Linac compared to high-field diagnostic MRI scanners. METHODS: The calibrated National Institute of Standards and Technology (NIST)/Quantitative Imaging Biomarkers Alliance (QIBA) Diffusion Phantom was scanned on a 0.35 T MRI-Linac, and 1.5 T and 3 T MRI with EPI-DWI. Five patients were scanned on a 0.35 T MRI-Linac with a TSE-DWI sequence, and five other patients were scanned with EPI-DWI on a 0.35 T MRI-Linac and a 3 T MRI. The quality of images was compared between the TSE-DWI and EPI-DWI on the 0.35 T MRI-Linac assessing signal-to-noise ratios and presence of artifacts. EPI-DWI ADC values and distortion magnitude were measured and compared between 0.35 T MRI-Linac and high-field MRI for both phantom and patient studies. RESULTS: The average ADC differences between EPI-DWI acquired on the 0.35 T MRI-Linac, 1.5 T and 3 T MRI scanners and published references in the phantom study were 1.7%, 0.4% and 1.0%, respectively. Comparing the ADC values based on EPI-DWI in glioblastoma tumors, there was a 3.36% difference between 0.35 and 3 T measurements. Susceptibility-induced distortions in the EPI-DWI phantoms were 0.46 ± 1.51 mm for 0.35 MRI-Linac, 0.98 ± 0.51 mm for 1.5 T MRI and 1.14 ± 1.88 mm for 3 T MRI; for patients -0.47 ± 0.78 mm for 0.35 T and 1.73 ± 2.11 mm for 3 T MRIs. The mean deformable registration distortion for a phantom was 1.1 ± 0.22 mm, 3.5 ± 0.39 mm and 4.7 ± 0.37 mm for the 0.35 T MRI-Linac, 1.5 T MRI, and 3 T MRI scanners, respectively; for patients this distortion was -0.46 ± 0.57 mm for 0.35 T and 4.2 ± 0.41 mm for 3 T. EPI-DWI 0.35 T MRI-Linac images showed higher SNR and lack of artifacts compared with TSE-DWI, especially at higher b-values up to 1000 s/mm2. CONCLUSION: EPI-DWI on a 0.35 T MRI-Linac showed superior image quality compared with TSE-DWI, minor and less distortions than high-field diagnostic scanners, and comparable ADC values in phantoms and glioblastoma tumors. EPI-DWI should be investigated on the 0.35 T MRI-Linac for prediction of early response in patients with glioblastoma.

4.
Cureus ; 16(2): e55070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38550495

RESUMO

Objectives In this study, we outline our rationale for delivering a dose of ≥15 Gy in stereotactic radiosurgery (SRS) of glomus jugulare tumor (GJT) while ensuring the avoidance of complications associated with doses >13 Gy to the facial nerve. To avoid such complications, we initially utilized the Gamma Knife Perfexion (GK) system (Elekta Instrument AB, Stockholm, Sweden) at our institution but encountered challenges related to lengthy treatment times and difficulty in sculpting doses to minimize doses to spare the facial nerve. As a potential solution, we propose the use of HyperArc (Varian Medical Systems, Palo Alto, CA), a newly developed automated delivery platform for linear accelerator (LINAC)-based SRS. HyperArc offers the potential for faster treatment and more complex shaping of the radiotherapy dose with multiple arcs and multi-leaf collimators. Methods We retrospectively reviewed nine cases of patients with GJT treated with HyperArc. Patients' demographic and treatment data were collected. Additionally, simulated GK treatment plans were created and compared with HyperArc plans to assess time savings, PTV coverage, and plan quality. Results One male and eight female patients, with a mean age of 63.9 years, were included. Treatments were delivered on average in 29 minutes, achieving 95-100% of the tumor while limiting the facial nerve to <13 Gy. Treatments replanned using our GK system could achieve only 92-99% tumor coverage while respecting facial nerve constraints, with average treatment times of 180 minutes. Comparable plan quality parameters were attained with both modalities. Conclusions The HyperArc system provides a qualitatively satisfactory and rapid treatment delivery of a highly sculpted radiotherapy dose to maximize tumor coverage and minimize facial nerve complications.

5.
Neuro Oncol ; 26(12 Suppl 2): S3-S16, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437669

RESUMO

Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.


Assuntos
Glioblastoma , Neurologia , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Quimiorradioterapia
6.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958415

RESUMO

Glioblastoma changes during chemoradiotherapy are inferred from high-field MRI before and after treatment but are rarely investigated during radiotherapy. The purpose of this study was to develop a deep learning network to automatically segment glioblastoma tumors on daily treatment set-up scans from the first glioblastoma patients treated on MRI-linac. Glioblastoma patients were prospectively imaged daily during chemoradiotherapy on 0.35T MRI-linac. Tumor and edema (tumor lesion) and resection cavity kinetics throughout the treatment were manually segmented on these daily MRI. Utilizing a convolutional neural network, an automatic segmentation deep learning network was built. A nine-fold cross-validation schema was used to train the network using 80:10:10 for training, validation, and testing. Thirty-six glioblastoma patients were imaged pre-treatment and 30 times during radiotherapy (n = 31 volumes, total of 930 MRIs). The average tumor lesion and resection cavity volumes were 94.56 ± 64.68 cc and 72.44 ± 35.08 cc, respectively. The average Dice similarity coefficient between manual and auto-segmentation for tumor lesion and resection cavity across all patients was 0.67 and 0.84, respectively. This is the first brain lesion segmentation network developed for MRI-linac. The network performed comparably to the only other published network for auto-segmentation of post-operative glioblastoma lesions. Segmented volumes can be utilized for adaptive radiotherapy and propagated across multiple MRI contrasts to create a prognostic model for glioblastoma based on multiparametric MRI.

7.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568773

RESUMO

Glioblastoma (GBM) has a poor survival rate even with aggressive surgery, concomitant radiation therapy (RT), and adjuvant chemotherapy. Standard-of-care RT involves irradiating a lower dose to the hyperintense lesion in T2-weighted fluid-attenuated inversion recovery MRI (T2w/FLAIR) and a higher dose to the enhancing tumor on contrast-enhanced, T1-weighted MRI (CE-T1w). While there have been several attempts to segment pre-surgical brain tumors, there have been minimal efforts to segment post-surgical tumors, which are complicated by a resection cavity and postoperative blood products, and tools are needed to assist physicians in generating treatment contours and assessing treated patients on follow up. This report is one of the first to train and test multiple deep learning models for the purpose of post-surgical brain tumor segmentation for RT planning and longitudinal tracking. Post-surgical FLAIR and CE-T1w MRIs, as well as their corresponding RT targets (GTV1 and GTV2, respectively) from 225 GBM patients treated with standard RT were trained on multiple deep learning models including: Unet, ResUnet, Swin-Unet, 3D Unet, and Swin-UNETR. These models were tested on an independent dataset of 30 GBM patients with the Dice metric used to evaluate segmentation accuracy. Finally, the best-performing segmentation model was integrated into our longitudinal tracking web application to assign automated structured reporting scores using change in percent cutoffs of lesion volume. The 3D Unet was our best-performing model with mean Dice scores of 0.72 for GTV1 and 0.73 for GTV2 with a standard deviation of 0.17 for both in the test dataset. We have successfully developed a lightweight post-surgical segmentation model for RT planning and longitudinal tracking.

8.
Cancers (Basel) ; 15(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37444634

RESUMO

Despite aggressive treatment, glioblastoma has a poor prognosis due to its infiltrative nature. Spectroscopic MRI-measured brain metabolites, particularly the choline to N-acetylaspartate ratio (Cho/NAA), better characterizes the extent of tumor infiltration. In a previous pilot trial (NCT03137888), brain regions with Cho/NAA ≥ 2x normal were treated with high-dose radiation for newly diagnosed glioblastoma patients. This report is a secondary analysis of that trial where spectroscopic MRI-based biomarkers are evaluated for how they correlate with progression-free and overall survival (PFS/OS). Subgroups were created within the cohort based on pre-radiation treatment (pre-RT) median cutoff volumes of residual enhancement (2.1 cc) and metabolically abnormal volumes used for treatment (19.2 cc). We generated Kaplan-Meier PFS/OS curves and compared these curves via the log-rank test between subgroups. For the subgroups stratified by metabolic abnormality, statistically significant differences were observed for PFS (p = 0.019) and OS (p = 0.020). Stratification by residual enhancement did not lead to observable differences in the OS (p = 0.373) or PFS (p = 0.286) curves. This retrospective analysis shows that patients with lower post-surgical Cho/NAA volumes had significantly superior survival outcomes, while residual enhancement, which guides high-dose radiation in standard treatment, had little significance in PFS/OS. This suggests that the infiltrating, non-enhancing component of glioblastoma is an important factor in patient outcomes and should be treated accordingly.

9.
HPB (Oxford) ; 25(9): 1110-1120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286392

RESUMO

BACKGROUND: The influence of chemotherapy type and vascular margin status after sequential chemotherapy and stereotactic body radiation therapy (SBRT) for borderline resectable pancreatic cancer (BRPC) is unknown. METHODS: A retrospective review was performed on BRPC patients treated with chemotherapy and 5-fraction SBRT from 2009 to 2021. Surgical outcomes and SBRT-related toxicity were reported. Clinical outcomes were estimated by Kaplan-Meier with log rank comparisons. RESULTS: A total of 303 patients received neoadjuvant chemotherapy and SBRT to a median dose of 40 Gy prescribed to the tumor-vessel interface and median dose of 32.4 Gyto 95% of the gross tumor volume. One hundred and sixty-nine patients (56%) were resected and benefited from improved median OS (41.1 vs 15.5 months, P < 0.001). Close/positive vascular margins were not associated with worse OS or FFLRF. Type of neoadjuvant chemotherapy did not influence OS for resected patients, but FOLFIRINOX was associated with improved median OS in unresected patients (18.2 vs 13.1 months, P = 0.001). CONCLUSION: For BRPC, the effect of a positive or close vascular margin may be mitigated by neoadjuvant therapy. Shorter duration neoadjuvant chemotherapy as well as the optimal biological effective dose of radiotherapy should be prospectively explored.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Radiocirurgia , Humanos , Terapia Neoadjuvante/efeitos adversos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Adenocarcinoma/patologia , Pâncreas/patologia , Neoplasias Pancreáticas
10.
Tomography ; 9(3): 1052-1061, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37218946

RESUMO

Accurate radiation therapy (RT) targeting is crucial for glioblastoma treatment but may be challenging using clinical imaging alone due to the infiltrative nature of glioblastomas. Precise targeting by whole-brain spectroscopic MRI, which maps tumor metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early treatment-induced molecular changes that other traditional modalities cannot measure. We developed a pipeline to determine how spectroscopic MRI changes during early RT are associated with patient outcomes to provide insight into the utility of adaptive RT planning. Data were obtained from a study (NCT03137888) where glioblastoma patients received high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, and received spectroscopic MRI scans pre- and mid-RT. Overlap statistics between pre- and mid-RT scans were used to quantify metabolic activity changes after two weeks of RT. Log-rank tests were used to quantify the relationship between imaging metrics and patient overall and progression-free survival (OS/PFS). Patients with lower Jaccard/Dice coefficients had longer PFS (p = 0.045 for both), and patients with lower Jaccard/Dice coefficients had higher OS trending towards significance (p = 0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during early RT, putting healthy tissue at risk of irradiation, and warranting further study into using adaptive RT planning.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador
11.
Cancers (Basel) ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900346

RESUMO

During radiation therapy (RT) of glioblastoma, daily MRI with combination MRI-linear accelerator (MRI-Linac) systems has demonstrated significant anatomic changes, including evolving post-surgical cavity shrinkage. Cognitive function RT for brain tumors is correlated with radiation doses to healthy brain structures, especially the hippocampi. Therefore, this study investigates whether adaptive planning to the shrinking target could reduce normal brain RT dose with the goal of improving post-RT function. We evaluated 10 glioblastoma patients previously treated on a 0.35T MRI-Linac with a prescription of 60 Gy delivered in 30 fractions over six weeks without adaptation ("static plan") with concurrent temozolomide chemotherapy. Six weekly plans were created per patient. Reductions in the radiation dose to uninvolved hippocampi (maximum and mean) and brain (mean) were observed for weekly adaptive plans. The dose (Gy) to the hippocampi for static vs. weekly adaptive plans were, respectively: max 21 ± 13.7 vs. 15.2 ± 8.2 (p = 0.003) and mean 12.5 ± 6.7 vs. 8.4 ± 4.0 (p = 0.036). The mean brain dose was 20.6 ± 6.0 for static planning vs. 18.7 ± 6.8 for weekly adaptive planning (p = 0.005). Weekly adaptive re-planning has the potential to spare the brain and hippocampi from high-dose radiation, possibly reducing the neurocognitive side effects of RT for eligible patients.

12.
Radiat Oncol ; 18(1): 37, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814267

RESUMO

BACKGROUND: Glioblastoma (GBM) cellularity correlates with whole brain spectroscopic MRI (sMRI) generated relative choline to N-Acetyl-Aspartate ratio (rChoNAA) mapping. In recurrent GBM (rGBM), tumor volume (TV) delineation is challenging and rChoNAA maps may assist with re-RT targeting. METHODS: Fourteen rGBM patients underwent sMRI in a prospective study. Whole brain sMRI was performed to generate rChoNAA maps. TVs were delineated by the union of rChoNAA ratio over 2 (rChoNAA > 2) on sMRI and T1PC. rChoNAA > 2 volumes were compared with multiparametric MRI sequences including T1PC, T2/FLAIR, diffusion-restriction on apparent diffusion coefficient (ADC) maps, and perfusion relative cerebral blood volume (rCBV). RESULTS: rChoNAA > 2 (mean 27.6 cc, range 6.6-79.1 cc) was different from other imaging modalities (P ≤ 0.05). Mean T1PC volumes were 10.7 cc (range 1.2-31.4 cc). The mean non-overlapping volume of rChoNAA > 2 and T1PC was 29.2 cm3. rChoNAA > 2 was 287% larger (range 23% smaller-873% larger) than T1PC. T2/FLAIR volumes (mean 111.7 cc, range 19.0-232.7 cc) were much larger than other modalities. rCBV volumes (mean 6.2 cc, range 0.2-19.1 cc) and ADC volumes were tiny (mean 0.8 cc, range 0-3.7 cc). Eight in-field failures were observed. Three patients failed outside T1PC but within rChoNAA > 2. No grade 3 toxicities attributable to re-RT were observed. Median progression-free and overall survival for re-RT patients were 6.5 and 7.1 months, respectively. CONCLUSIONS: Treatment of rGBM may be optimized by sMRI, and failure patterns suggest benefit for dose-escalation within sMRI-delineated volumes. Dose-escalation and radiologic-pathologic studies are underway to confirm the utility of sMRI in rGBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Estudos Prospectivos , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos
13.
Tomography ; 9(1): 362-374, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828381

RESUMO

Glioblastoma (GBM) is a fatal disease, with poor prognosis exacerbated by difficulty in assessing tumor extent with imaging. Spectroscopic MRI (sMRI) is a non-contrast imaging technique measuring endogenous metabolite levels of the brain that can serve as biomarkers for tumor extension. We completed a three-site study to assess survival benefits of GBM patients when treated with escalated radiation dose guided by metabolic abnormalities in sMRI. Escalated radiation led to complex post-treatment imaging, requiring unique approaches to discern tumor progression from radiation-related treatment effect through our quantitative imaging platform. The purpose of this study is to determine true tumor recurrence timepoints for patients in our dose-escalation multisite study using novel methodology and to report on median progression-free survival (PFS). Follow-up imaging for all 30 trial patients were collected, lesion volumes segmented and graphed, and imaging uploaded to our platform for visual interpretation. Eighteen months post-enrollment, the median PFS was 16.6 months with a median time to follow-up of 20.3 months. With this new treatment paradigm, incidence rate of tumor recurrence one year from treatment is 30% compared to 60-70% failure under standard care. Based on the delayed tumor progression and improved survival, a randomized phase II trial is under development (EAF211).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Recidiva Local de Neoplasia , Doses de Radiação
14.
Neuroradiol J ; 36(2): 198-205, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36000488

RESUMO

PURPOSE: In this pilot study, DKI measures of diffusivity and kurtosis were compared in active tumor regions and correlated to radiologic response to radiotherapy after completion of 2 weeks of treatment to derive potential early measures of tumor response. METHODS: MRI and Magnetic Resonance Spectroscopic Imaging (MRSI) data were acquired before the beginning of RT (pre-RT) and 2 weeks after the initiation of treatment (during-RT) in 14 glioblastoma patients. The active tumor region was outlined as the union of the residual contrast-enhancing region and metabolically active tumor region. Average and standard deviation of mean, axial, and radial diffusivity (MD, AD, RD) and mean, axial, and radial kurtosis (MK, AK, RK) values were calculated for the active tumor VOI from images acquired pre-RT and during-RT and paired t-tests were executed to estimate pairwise differences. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predictive capabilities of changes in diffusion metrics for progression-free survival (PFS). RESULTS: Analysis showed significant pairwise differences for AD (p = 0.035; Cohen's d of 0.659) and AK (p = 0.019; Cohen's d of 0.753) in diffusion measures after 2 weeks of RT. ROC curve analysis showed that percentage change differences in AD and AK between pre-RT and during-RT scans provided an Area Under the Curve (AUC) of 0.524 and 0.762, respectively, in discriminating responders (PFS>180 days) and non-responders (PFS<180 days). CONCLUSION: This pilot study, although preliminary in nature, showed significant changes in AD and AK maps, with kurtosis derived AK maps showing an increased sensitivity in mapping early changes in the active tumor regions.


Assuntos
Imagem de Tensor de Difusão , Glioblastoma , Humanos , Projetos Piloto , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia
15.
J Radiosurg SBRT ; 8(2): 85-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275132

RESUMO

Objectives: Patients undergoing stereotactic radiosurgery (SRS) for brain metastases require additional radiation for relapse. Our objective is to determine the factors associated with salvage SRS versus whole brain radiation therapy (WBRT) for salvage of first intracranial failure (ICF) after upfront SRS. Method: We identified a cohort of 110 patients with brain metastases treated with SRS in the definitive or postoperative setting followed by subsequent salvage WBRT or SRS at least one month after initial SRS. Clinical and demographic characteristics were retrospectively recorded. Results: 78 Patients received SRS and 32 patients received WBRT at the time of first ICF. On multivariate analysis (MVA) factors associated with decreased use of salvage SRS were male gender (p=0.044) and local progression (p<0.001). Conclusions: Local progression and male gender were the strongest factors associated with selection of salvage WBRT. Possible etiologies of this difference could be provider or patient driven, but warrant further exploration.

16.
World Neurosurg ; 167: e738-e746, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36028107

RESUMO

OBJECTIVES: The optimal frequency of surveillance brain magnetic resonance imaging (MRI) in long-term survivors with brain metastases after stereotactic radiosurgery (SRS) is unknown. Our aim was to identify the optimal frequency of surveillance imaging in long-term survivors with brain metastases after SRS. METHODS: Eligible patients were identified from a cohort treated with SRS definitively or postoperatively at our institution from 2014 to 2019 with no central nervous system (CNS) failure within 12 months from SRS. Time to CNS disease failure diagnosis and cost per patient were estimated using theoretical MRI schedules of 2, 3, 4, and 6 months starting 1 year after SRS until CNS failure. Time to diagnosis was calculated from the date of CNS progression to the theoretical imaging date on each schedule. RESULTS: This cohort included 55 patients (median follow-up from SRS: 2.48 years). During the study period, 20.0% had CNS disease failure (median: 2.26 years from SRS treatment). In this cohort, a theoretical 2-month, 3-month, 4-month, and 6-month MRI brain surveillance schedule produced a respective estimated time to diagnosis of CNS disease failure of 1.11, 1.74, 1.65, and 3.65 months. The cost of expedited diagnosis for the cohort (dollars/month) for each theoretical imaging schedule compared with a 6-month surveillance schedule was $6600 for a 2-month protocol, $4496 for a 3-month protocol, and $2180 for a 4-month protocol. CONCLUSIONS: Based on cost-benefit, a 4-month MRI brain schedule should be considered in patients with metastatic disease to the brain treated definitively or postoperatively with SRS without evidence of CNS recurrence at 1 year.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Sobreviventes , Estudos Retrospectivos , Resultado do Tratamento
17.
Front Oncol ; 12: 854349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664789

RESUMO

Background/Hypothesis: MRI-guided online adaptive radiotherapy (MRI-g-OART) improves target coverage and organs-at-risk (OARs) sparing in radiation therapy (RT). For patients with locally advanced cervical cancer (LACC) undergoing RT, changes in bladder and rectal filling contribute to large inter-fraction target volume motion. We hypothesized that deep learning (DL) convolutional neural networks (CNN) can be trained to accurately segment gross tumor volume (GTV) and OARs both in planning and daily fractions' MRI scans. Materials/Methods: We utilized planning and daily treatment fraction setup (RT-Fr) MRIs from LACC patients, treated with stereotactic body RT to a dose of 45-54 Gy in 25 fractions. Nine structures were manually contoured. MASK R-CNN network was trained and tested under three scenarios: (i) Leave-one-out (LOO), using the planning images of N- 1 patients for training; (ii) the same network, tested on the RT-Fr MRIs of the "left-out" patient, (iii) including the planning MRI of the "left-out" patient as an additional training sample, and tested on RT-Fr MRIs. The network performance was evaluated using the Dice Similarity Coefficient (DSC) and Hausdorff distances. The association between the structures' volume and corresponding DSCs was investigated using Pearson's Correlation Coefficient, r. Results: MRIs from fifteen LACC patients were analyzed. In the LOO scenario the DSC for Rectum, Femur, and Bladder was >0.8, followed by the GTV, Uterus, Mesorectum and Parametrium (0.6-0.7). The results for Vagina and Sigmoid were suboptimal. The performance of the network was similar for most organs when tested on RT-Fr MRI. Including the planning MRI in the training did not improve the segmentation of the RT-Fr MRI. There was a significant correlation between the average organ volume and the corresponding DSC (r = 0.759, p = 0.018). Conclusion: We have established a robust workflow for training MASK R-CNN to automatically segment GTV and OARs in MRI-g-OART of LACC. Albeit the small number of patients in this pilot project, the network was trained to successfully identify several structures while challenges remain, especially in relatively small organs. With the increase of the LACC cases, the performance of the network will improve. A robust auto-contouring tool would improve workflow efficiency and patient tolerance of the OART process.

18.
Neurooncol Adv ; 4(1): vdac006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382436

RESUMO

Background: Glioblastomas (GBMs) are aggressive brain tumors despite radiation therapy (RT) to 60 Gy and temozolomide (TMZ). Spectroscopic magnetic resonance imaging (sMRI), which measures levels of specific brain metabolites, can delineate regions at high risk for GBM recurrence not visualized on contrast-enhanced (CE) MRI. We conducted a clinical trial to assess the feasibility, safety, and efficacy of sMRI-guided RT dose escalation to 75 Gy for newly diagnosed GBMs. Methods: Our pilot trial (NCT03137888) enrolled patients at 3 institutions (Emory University, University of Miami, Johns Hopkins University) from September 2017 to June 2019. For RT, standard tumor volumes based on T2-FLAIR and T1w-CE MRIs with margins were treated in 30 fractions to 50.1 and 60 Gy, respectively. An additional high-risk volume based on residual CE tumor and Cho/NAA (on sMRI) ≥2× normal was treated to 75 Gy. Survival curves were generated by the Kaplan-Meier method. Toxicities were assessed according to CTCAE v4.0. Results: Thirty patients were treated in the study. The median age was 59 years. 30% were MGMT promoter hypermethylated; 7% harbored IDH1 mutation. With a median follow-up of 21.4 months for censored patients, median overall survival (OS) and progression-free survival were 23.0 and 16.6 months, respectively. This regimen appeared well-tolerated with 70% of grade 3 or greater toxicity ascribed to TMZ and 23% occurring at least 1 year after RT. Conclusion: Dose-escalated RT to 75 Gy guided by sMRI appears feasible and safe for patients with newly diagnosed GBMs. OS outcome is promising and warrants additional testing. Based on these results, a randomized phase II trial is in development.

19.
Otolaryngol Head Neck Surg ; 167(5): 860-868, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35230908

RESUMO

OBJECTIVE: To describe the RAD51 response (DNA repair) to radiation-induced DNA damage in patient-derived vestibular schwannoma (VS) cells and investigate the utility of RAD51 inhibitor (RI-1) in enhancing radiation toxicity. STUDY DESIGN: Basic and translational science. SETTING: Tertiary academic facility. METHODS: VS tumors (n = 10) were cultured on 96-well plates and 16-well slides, exposed to radiation (0, 6, 12, or 18 Gy), and treated with RI-1 (0, 5, or 10 µM). Immunofluorescence was performed at 6 hours for γ-H2AX (DNA damage marker), RAD51 (DNA repair protein), and p21 (cell cycle arrest protein). Viability assays were performed at 96 hours, and capillary Western blotting was utilized to determine RAD51 expression in naïve VS tumors (n = 5). RESULTS: VS tumors expressed RAD51. In cultured VS cells, radiation initiated dose-dependent increases in γ-H2AX and p21 expression. VS cells upregulated RAD51 to repair DNA damage following radiation. Addition of RI-1 reduced RAD51 expression in a dose-dependent manner and was associated with increased γ-H2AX levels and decreased viability in a majority of cultured VS tumors. CONCLUSION: VS may evade radiation injury by entering cell cycle arrest and upregulating RAD51-dependent repair of radiation-induced double-stranded breaks in DNA. Although there was variability in responses among individual primary VS cells, RAD51 inhibition with RI-1 reduced RAD51-dependent DNA repair to enhance radiation toxicity in VS cells. Further investigations are warranted to understand the mechanisms of radiation resistance in VS and determine whether RI-1 is an effective radiosensitizer in patients with VS.


Assuntos
Neuroma Acústico , Rad51 Recombinase , Lesões por Radiação , Humanos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Rad51 Recombinase/antagonistas & inibidores , Células Tumorais Cultivadas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...